\n\n
Der Druckguss (HPDC) hat neben seinen zahlreichen Vorteilen auch einige Nachteile. Die folgenden drei Hauptbeschr\u00e4nkungen gelten f\u00fcr den Druckguss:<\/p>\n
Kosten der Werkzeugherstellung:<\/strong>
Beim Druckguss k\u00f6nnen die anf\u00e4nglichen Werkzeugkosten recht hoch sein. Es kostet viel Geld, die Gussformen herzustellen, mit denen das geschmolzene Metall geformt wird. Die Komplexit\u00e4t und die Kosten ihrer Herstellung werden dadurch erh\u00f6ht, dass die Formen hohen Dr\u00fccken und Temperaturen standhalten m\u00fcssen. Die Kosten f\u00fcr die Werkzeuge k\u00f6nnen ein gro\u00dfes Problem darstellen, vor allem bei der Entwicklung von Prototypen oder begrenzten Produktionsserien.<\/p>\nBegrenzte Auswahl an Legierungen:
<\/strong>Legierungen, die bei hohen Temperaturen eine ausgezeichnete Flie\u00dff\u00e4higkeit und Gie\u00dfbarkeit aufweisen, sind h\u00e4ufig geeignete Kandidaten f\u00fcr den Druckguss. Aufgrund ihrer vorteilhaften Eigenschaften werden Aluminium und Zink h\u00e4ufig f\u00fcr den Druckguss verwendet. Bestimmte Legierungen, die bei hohen Dr\u00fccken schlecht gie\u00dfbar sind oder zu Porosit\u00e4t neigen, sind jedoch m\u00f6glicherweise nicht so gut f\u00fcr dieses Verfahren geeignet. Bestimmte Legierungen k\u00f6nnten andere Gie\u00dftechniken oder Anpassungen der Prozessparameter erfordern.<\/p>\nBeschr\u00e4nkungen der Teilegr\u00f6\u00dfe:<\/strong>
Kleinere bis mittelgro\u00dfe Bauteile sind oft besser f\u00fcr den Druckguss geeignet. Die Gr\u00f6\u00dfe und das Gewicht der Teile, die effizient hergestellt werden k\u00f6nnen, k\u00f6nnen durch die f\u00fcr das Verfahren eingesetzten Maschinen und Anlagen begrenzt sein. Es k\u00f6nnte schwierig sein, gr\u00f6\u00dfere und schwerere Teile im Druckgussverfahren zu gie\u00dfen. Andere Gie\u00dfverfahren, wie Sandguss oder Niederdruckguss, k\u00f6nnen f\u00fcr gr\u00f6\u00dfere Teile besser geeignet sein.
Es ist wichtig, sich vor Augen zu halten, dass das Druckgussverfahren trotz dieser Nachteile f\u00fcr viele Anwendungen geeignet ist. Das Verfahren ist nach wie vor sehr n\u00fctzlich f\u00fcr die Herstellung einer Vielzahl von Bauteilen, insbesondere von solchen, die in gro\u00dfen St\u00fcckzahlen mit einem hohen Ma\u00df an Genauigkeit und Komplexit\u00e4t hergestellt werden m\u00fcssen. Bei der Wahl eines Gie\u00dfverfahrens f\u00fcr ein bestimmtes Projekt sollten Konstrukteure und Hersteller diese Grenzen jedoch sorgf\u00e4ltig analysieren und pr\u00fcfen, ob das Druckgussverfahren ihren Bed\u00fcrfnissen und Einschr\u00e4nkungen entspricht.<\/p>\n\n<\/div>\n<\/div>\n\n
Wie hoch ist der Druck beim Druckguss?<\/h3>\n\n\n
Druckguss ist ein Verfahren, bei dem komplizierte und pr\u00e4zise Objekte entstehen, indem geschmolzenes Metall unter hohem Druck in eine Formkammer gepresst wird. Ein wichtiger Faktor, der die Geschwindigkeit, Integrit\u00e4t und Qualit\u00e4t des Gie\u00dfprozesses beeinflusst, ist der Druck, der w\u00e4hrend des Druckgussverfahrens angewendet wird. Das zu gie\u00dfende Material, die Gr\u00f6\u00dfe und Komplexit\u00e4t des Bauteils und die jeweilige Druckgusstechnik (z. B. Druckguss oder Niederdruckguss) k\u00f6nnen den erforderlichen Druck beeinflussen. Nachfolgend finden Sie typische Druckbereiche f\u00fcr verschiedene Druckgussarten:<\/p>\n
Hochdruck-Druckguss (HPDC):<\/strong>
Der beim Druckguss h\u00e4ufig verwendete Druckbereich liegt bei 70 bis 200 MPa (10.000 bis 30.000 psi).
During the injection step, considerable pressure is used to guarantee that the molten metal fills the mold cavity fully and quickly.<\/p>\nLow-Pressure Die Casting (LPDC):
<\/strong>In contrast to high-pressure die casting, low-pressure die casting employs lower pressures.
Generally speaking, pressures in LPDC vary from a few hundred to a few thousand psi (or from 0.07 to 3 MPa).
Throughout the casting process, the lower pressure is maintained, enabling a slower, more deliberate fill of the mold.<\/p>\nGravity Die Casting:<\/strong>
Melted metal is poured into the mold using gravity in gravity die casting, rather than using a lot of external pressure.
The height at which the molten metal is poured determines the pressure in gravity die casting, which is much lower than in high-pressure die casting.<\/p>\nIt’s crucial to remember that the precise pressure needs might change depending on the alloy being cast, the part’s design, and the casting apparatus used. In order to achieve full mold filling, reduce errors, and guarantee the manufacture of castings of superior quality, pressure is an essential element.<\/p>\n
The pressure numbers shown here are just suggestions; the actual pressures used in die casting may vary according to the particular needs of the project and the equipment’s capacity. In order to achieve the intended outcomes, casting process optimization requires careful consideration of these characteristics by designers and manufacturers.<\/p>\n\n<\/div>\n<\/div>\n
\n
Why does high pressure die casting?<\/h3>\n\n\n
For the manufacturing of intricate metal components, high-pressure die casting (HPDC) is used for a number of reasons, chief among them being the benefits it provides in terms of effectiveness, accuracy, and affordability. Here are several main justifications for the widespread usage of high-pressure die casting:<\/p>\n
Quick Production:<\/strong>
High-pressure die casting makes it possible to produce intricate pieces quickly and precisely in huge numbers.
The method allows for quick cycle times, which makes it appropriate for large-scale production.<\/p>\nintricate geometries<\/strong>\uff1a
For casting complicated, detailed forms with precise features, HPDC is a good fit.
High pressure is used throughout the casting process to guarantee that molten metal fills complex mold cavities, resulting in components with fine details and tight tolerances.<\/p>\nDimensional Precision:<\/strong>
Excellent dimensional precision and reproducibility are the outcome of maintaining a high pressure during the whole solidification process.
High-pressure die-casting components usually don’t need much further machining.<\/p>\nSlender Walled Areas:<\/strong>
Lightweight components and thin-walled sections may be produced using high-pressure die casting without compromising structural integrity.
Because of this, the procedure may be used in situations when losing weight is essential.<\/p>\nSuperior Material Integrity:<\/strong>
The cast pieces’ material integrity is improved and porosity is reduced thanks to the high pressure.
Better mechanical qualities, such increased strength and enhanced surface polish, are the outcome of this.<\/p>\nEconomical for Large Volumes:<\/strong>
Large production runs make high-pressure die casting cost-effective, despite the potentially expensive initial tooling costs.
The low amount of post-casting machining and high production rates add to the overall cost effectiveness.<\/p>\nVersatility of Alloy:<\/strong>
High-pressure die casting is a flexible process that works with a variety of alloys, the most popular ones being zinc and aluminum.
This makes it possible to choose materials with flexibility in accordance with certain performance criteria.<\/p>\nDiminished Waste:<\/strong>
Reduced scrap and material waste are a result of the die casting process’s great accuracy and control.
The need for extra material reduction is reduced when near-net-shape components may be produced.<\/p>\nEven though high-pressure die casting has several benefits, it’s important to take the particular needs of a given application into account. When selecting the best casting technique, consideration should be given to elements including component size, complexity, production volume, and material qualities.<\/p>\n\n<\/div>\n<\/div>\n
\n
What type of aluminum is used for die casting?<\/h3>\n\n\n
Good mechanical qualities, outstanding castability, and resistance to the high pressures and temperatures needed in the die casting process define aluminum alloys that are often used in die casting. The following aluminum alloys are most often used in die casting:<\/p>\n
1. Aluminum Alloy 380 (A380):
One of the most popular alloys of aluminum for die casting is A380.
It has excellent machining and casting qualities.
Because of its exceptional fluidity, the A380 is a good choice for manufacturing intricate components with thin walls.<\/p>\n
2. Aluminum Alloy 383 (A383):
A383 and A380 are comparable, while A383 has better resistance to heat cracking.
It is very useful for die casting complex components because of its increased fluidity.<\/p>\n
3. Aluminum Alloy 360 (A360):
High strength, superior resistance to corrosion, and exceptional pressure tightness are attributes of A360.
It is often used for items that need to be machined as well as cast.<\/p>\n
4. Aluminum Alloy 413 (A413):
Excellent fluidity and pressure tightness are provided by A413.
It is often applied to components that need to be very durable and resistant to corrosion.<\/p>\n
5.Aluminum Alloy 390 (A390):
Excellent corrosion resistance and pressure tightness are two of A390’s best qualities.
It is often used in applications needing high-performance qualities, such as automobile components.<\/p>\n
6. Aluminum Alloy 356 (A356):
The popular aluminum-silicon alloy A356 is renowned for its excellent casting qualities and thermal treatability.
It provides an excellent balance of corrosion resistance, ductility, and strength.<\/p>\n
7. Aluminum Alloy 319 (A319):
When applications call for more fluidity and pressure tightness than some other alloys, A319 is often used.<\/p>\n
The requirements of the application, which include elements like mechanical qualities, corrosion resistance, thermal conductivity, and economic considerations, determine which particular aluminum alloy is best for die casting. Depending on how these qualities need to be balanced for a given part or application, several alloys may be used. It’s also important to remember that new aluminum alloys may eventually be used in die casting applications as a result of developments in die casting technology and alloy development.<\/p>\n\n<\/div>\n<\/div>\n